Contributions of Tree Breeding to Create Forests for the Future

STAATSBETRIEB SACHSENFORST

- Challenge
- Catalogue of methods and contributions
- Conclusions and open questions

Forest tree breeding in Saxony

- Established 1946 in Tharandt near Dresden
- Since 1951 in Graupa, Pirna
- Today, one of the four major tree breeding institutions in DE

The challenge

- Current bark beetle infestation
 - Singular event due to unfavourable combination of several impacts on forests?
 - Unambiguous symptom for rapidly changing environmental conditions due to global anthropogenic impacts on climate and natural resources?
- Whatever the answer is another question:
 - To reforest and to create the forests for the future, which range of species is and which genetic resources of these species are available?

The challenge

(Rekacewicz et al. 2009; Number of Tree Species per Country in the World; https://www.grida.no/resources/11216)

The challenge

Range of species (for example Saxony)

- Native tree and shrub species
 - 128 woody species (among them 31 tree sp.) (Schmidt & Klausnitzer 2002)
 - 30 % of tree species (11 sp.) already endangered to different degree (Schulz 2013)
- Further endangering through pests and diseases (e. g. Ash, Maple)
- Loss and shift of area (e. g. Spruce, Pine, Beech)
- Next impact?

Catalogue of methods

- Conservation and promotion of forest genetic resources
- Selection of plus trees, progenies and provenances
- Phenotypic and genetic characterization
- Procurement of forest reproductive material
- Transfer of knowledge

What we are looking for?

STAATSBETRIEB SACHSENFORST

Trial plots	Green house	Laboratory

Response of tree species, their provenances and individuals to climatic factors

- Immediate, mid and long term response to frost or drought of plants
 - with different genetic background on one and the same site
 - with one and the same genetic background on different sites
- \rightarrow Evaluation of the response as such
- → Relations between immediate and long term response

Contributions – Native species

Response of provenances of European beech from the southwestern and the eastern part of Germany to climatic impacts

Contributions – alternative tree species

Knowledge already available, immediate use possible

- Alternative species: Grand fir, Douglas fir, Northern Red oak, Locust as well as Japanese larch
- Shelter wood: Aspen, Silver birch, Hybrid-poplar and Hybridlarch

Hybridlärche: Unterschiede zwischen Nachkommenschaften nach 2, 4 und 8 Wochen Trockenheit

Contributions - Tree species under intensive research

STAATSBETRIEB SACHSENFORST

Contributions - Tree species under intensive research

Wald-Kiefer

Berg-Ahorn

Contributions - Tree species under intensive research

STAATSBETRIEB SACHSENFORST

Contributions - Tree species under intensive research

- Comprehensive and interstate evaluation of existing experimental trial plots
 - → Special consideration of site conditions
 - → Selection and propagation of plus trees
- Establishment of clone collections as base for the establishment of seed orchards
- Evaluation of adaptability (e. g. genetic variability, response to drought and frost)

15 | 24.03.2021 | Wolf, H.; Dacasa Ri

Contributions - Species for future use

- Recommendations of Federal-State-Working Group "Forest Genetic Resources and Legal Regulations" (BLAG-FGR)
 - Category "Rare native tree species" (e. g. European lime, Hornbeam)
 - Category "European tree species" (e. g. Oriental beech, Nordmann fir)
 - Category "Non-European tree species" (e. g. Cedar)
- Interstate concept for the establishment of combined species and provenance trials by BLAG-FGR
- Elaboration of project proposal by Section Silviculture of the German Association of Forest Research Institutes (DVFFA)
- Selection and conservation of plus trees of species already well established (clone collections, seed orchards)

Conclusions and open questions

- Wide selection of methods and procedures in tree breeding → lot of possibilities
- Erosion of knowledge on the way in state as well as private institutions
- Project approach and legal constraints versus long term task
- Transfer, implementation, application
 - Con: Chancing and keeping of strategies
 - Pro: Promotion of breeding material
 - Pro: Examples for successful use
 - Pro: Balancing volatile supply and demand

- 2018 to 2020 begin of the end or end of the beginning?
- Air pollution mostly reversible climate change?
- Abiotic impacts big challenge biotic impacts a challenge too big?
- Limits of adaptability?
- Self healing powers of nature myth or reality?
- Role of forestry in a CO₂-neutral economy and society?

Gefördert durch:

Bundesministerium für Ernährung und Landwirtschaft Bau und Reaktorsicherheit

aufgrund eines Beschlusses des Deutschen Bundestages

STAATSBETRIEB

SACHSENFORST

Projektträger Bundesanstalt für Landwirtschaft und Ernährung

reistaat

Generously, the research work was and is financially supported by the European Union, the Federal Republic of Germany and the Free state of Saxony

Thank you very much for your attention