ADAPTIVE FOREST MANAGEMENT IN SLOVENIAN SPRUCE FORESTS

Matjaž Čater, Aleksander Marinšek, Tom Levanič, Primož Simončič

GOZDARSKI INŠTITUT SLOVENIJE *SLOVENIAN FORESTRY INSTITUTE* Yield and Silviculture dept.

Silvicultural systems:

- Irregular shelterwood (harvesting ... part of tending) •
- Selection system (Hufnagl / Biolley) ٠
- Free silvicultural technique (Mlinšek 1968)

4

Principles:

Sustainable

Close-to nature

Forest area	1 177 240 ha	58,1%
Forest reserves	9 508 ha	
Protective forests	98 762 ha	

	unit	conifers	broadleaves	Σ
Living stock	m ³	168 346 000	217 790 000	386 136 000
	m³/ha	143	186	329
Increment*	m³/year	4 226 000	5 262 000	9 488 000
	m³/ha, year	3.42	4.44	7.86

Species	[m³/ha]	%	
Fagus sylvatica L.	European beech	109.7	33.4
Picea abies(L.) Karst.	Norway spruce	94.3	28.7
Abies alba Mill.	European silver fir	25.9	7.9
Quercus petraea (Matt.) Liebl.	sessile oak	17.5	5.3
Pinus sylvestris L.	Scots pine	13.0	3.9
Acer pseudoplatanus L.	Sycamore maple	12.0	3.7
Carpinus betulus L.	common hornbeam	7.8	2.4
Castanea sativa Mill.	sweet chestnut	5.3	1.6
Pinus nigra Arnold	Austrian pine	5.2	1.6
Ostrya carpinifolia Scop.	hop hornbeam	4.7	1.3
other	33.3	10.2	
Σ	328.7	100.0	

Content

- 1) natural regeneration various sites and elevations;
- 2) light response: damaged vs. undamaged stand;
- 3) natural vs. planted response, extreme post-disturbance sites

adult

- 4) growth response different sites and elevations
- 5) future scenarios.

1. Natural regeneration: various sites and elevations

- 0 700m
- 700-1200m
- above 1200m

primary spruce sites

abundance of various tree species increases with altitude, more in shrub than in herb layer

secondary spruce sites

similar pattern, highest abundance in altitudes 700-1200m

fir and beech sites with more than 25% spruce

reversed pattern, highest abundance of all categories in lower altitudes, decreases with altitude

2. Light response: damaged vs. undamaged stands

Extreme weather events

3. Natural vs. planted: extreme post-disturbance sites

- three extreme sites (slope, exposure)
- natural vs. planted spruce regeneration
- observations: several years

best performance on moderate, flat sites; poor on steep slopes (assimilation, water utility, growth, competition, survival)

best response in natural, weak in planted spruce

4. Growth response - different sites and elevations

Radial growth coring sites

- each 20 trees x 2

14

Average radial growth

reduction of radial growth and st. dev.

Response of radial growth to climate - altitude belts

	Precipitation						on				Temperature										
		J	F	Μ	А	Μ	J	J	Α	S	0	J	F	Μ	А	Μ	J	J	Α	S	0
	Pokljuka			-											+	+					
above 1200m	<u>Sviščaki</u>								No	respor	nor	ise									
	<u>Pohorje</u>																				
	<u>Vršič</u> 1300m			-												+	+				
	Ravnik			+	+	+												-			
700 - 1200m	Mašun				+	+												-			
	Vitanje				+	+	+	+									-	-	-		
	<u>Vršič</u> 800m			+	+	+										-	-				
below 700m	Verd				+	+											-	-	-		
	Dole <u>pri Litiji</u>				+	+	+												-		
	<u>Sorško</u> polje				+	+						+	+	+			-	-			
	Loče			+	+	+										-	-				
16	Brežice			+	+	+										-	-	-			
	Apače			+	+	+										-					

Negative and positive pointer years

- very warm year, precipitatio deficit in spring and summer
- very warm year, little precipitation in growing season
- extremely warm spring and summer, big precipitation deficit
- sleat in February, warm year, above average precipitation

Coherent response on all sites regardles to the location

5. Model scenaro: suitability of sites for the spruce (until 2070)

Optimistic

Pesimistic

On sites below 700m spruce will be gone (both scenarios)

Conclusions

1. Preserving balance between growth potential and site productivity

Stand: density / silvicultural system structure slenderness (h/d_{1.3}) species admixture ???

Site: water availability soil characteristics altitude

2. Sufficient natural regeneration

- regeneration should follow (potential) site conditions
- advantage of natural over artificial (planted) regeneration
- focus on silver fir
- Douglas fir? (Natura 2000 sites)

3. Reduction of (predictable) risks

- rather mixed than pure forest stands
- slenderness < 70 on poor and < 80 on rich sites
- sites with average annual precipitation > 600mm
- avoiding shallow soils, steep and southern slopes
- lower living stock, shorter rotation
- gradual replacement of spruce on sites below 700m
- respecting future scenarios

4. Conversion

CONVENTIONAL FORESTRY

Clearcutting of Spruce plantation

CLOSE-TO NATURE FORESTRY

Conversion of Spruce monocultures

Authors acknowledge the financial support from the Slovenian Research Agency.

P4-0107 Program research group "Forest Biology, Ecology and Technology" at the Slovenian Forestry Institute

- V4-1820 Causes and effect of December 2017 windthrow on further development of European beech and Silver fir stands in Slovenian Forests
- V4-1614 Adaptive management in spruce forests in Slovenia