Máchová P.*, Cvrčková H., Trčková O., Vítová K.

Forestry and Game Management Research Institute, Strnady 136, 252 02 Jíloviště, Czech Republic

Corresponding author: Ing. Pavlína Máchová, Ph.D., Forestry and Game Management Research Institute, Strnady 136, 252 02 Jíloviště, Czech Republic; machova@vulhm.cz

Use of DNA analyses for verifying the declared origin of forest reproductive material

Introduction

Identity of forest tree reproductive material is essential in artificial forest regeneration. The Czech Republic as a member state of the European Union and in accordance with international legislation Table 1: Overview of forest reproductive material sources and designation of Norway spruce sample sets

Designation of		Pro				
forest reproductive material source	Source of forest reproductive material	maturation year	Natural Forest Areas	Forest vegetation zone	sampling phase	designation of sample set

(Council Directive 1999/105/EC on the marketing of forest reproductive material on the market) has the obligation to create a functioning control system for determination of forest reproductive material. The purpose of our study was to investigate the possibilities of using objective methods of DNA analysis to verify the declared origin of reproductive material of selected forest species (Norway spruce, European beech) in terms of the Czech Republic.

Methods

SM_1A_SIS

SM_1B_OSI

SM_1C_SEM

SM_1D_SAZ

SM_2A_SIS

SM_2B_OSI

SM_2C_SEM

SM_2D_SAZ

SM_3A_SIS

SM_3B_OSI

SM_3C_SEM

SM_3D_SAZ

SM_4A_SIS

SM_4B_OSI

SM_4C_SEM

SM_4D_SAZ

SM_5A_SIS

SM_5B_OSI

SM_5C_SEM

SM_5D_SAZ

SM_6A_SIS

SM_6B_OSI

SM_6C_SEM

SM_6D_SAZ

SM_8B_OSI

SM_8C_SEM

SM_8D_SAZ

SM_10B_OSI

SM_10C_SEM

SM_10C_OPO_SEM

10

SM_8C_OPO_SEM

Monitoring of the identity of reproductive material was carried out during three years, i.e. from seed collection to transplanted plants production. Sampling of reference samples was performed from the sets and units of reproductive material listed in Table 1, 2. Total genomic DNA was extracted using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Analyses of microsatellite (SSR) markers were performed on 1920 samples of the 32 sets of Norway spruce reproductive material from 8 selected sources of forest reproductive material (units of forest reproductive material) and on 1242 samples of the 21 sets of European beech reproductive material from 7 selected sources of forest reproductive material (units of forest reproductive material). Seven for Norway spruce (PAAC23, SpAG2, WS00111.K13, WS00716.F13, WS0022.B15, WS0073.H08, WS0023.B03) and nine for European beech (FS1-03, FS1-15, sfc0036, mfc 5, mfc 7, csolfagus_31, Fagsyl-000905, Fagsyl-001018, Fagsyl-002929) optimally polymorphic markers with sufficient informative values were used for the subsequent evaluation of the genetic structure by Bayesion clustering. PCR and fragment analysis procedures were optimized for selected markers. PCR products were separated by capillary electrophoresis using the Applied Biosystems 3500 genetic analyser. The program GenAlEx 6.503 (PEAKALL, SMOUSE 2006, 2012) and the Bayesian clustering method implemented in the software STRUCTURE 2.3.4 (PRITCHARD et al. 2000; FALUSH et al. 2003, 2007; HUBISZ et al. 2009) were used to analyze the genetic data. The analysis was based on the admixture model with Lock prior. Optimal numbers of clusters (K number) were detected by Structure Selector (LI, LIU 2018). The obtained genetic compositions of sets were compared after statistical processing.

2 BK_2A_OSI

BK_2B_SEM

BK_2C_SAZ

BK_3A_OSI

BK_3B_SEM

BK_3C_SAZ

BK_4A_OSI

BK 4B SEM

BK_4C_SAZ

BK_5A_OSI

BK_5B_SEM

BK_5C_SAZ

BK_6A_OSI

BK_6B_SEM

BK_6C_SAZ

BK_7A_OSI

BK_7B_SEM

BK_7C_SAZ

BK_10B_SEM

BK_10C_SAZ

10 BK_10A_OSI

1,

14

1>

1	CZ-2-2A-SM-0004-36-3-Z	2017	3. LVS 36 – Stře	domoravské Karpaty	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_1A_SIS SM_1B_OSI SM_1C_SEM SM_1D_SAZ
2	CZ-2-2A-SM-00010-17-3-E	2017	3. LVS 17 – Pola	bí	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_2A_SIS SM_2B_OSI SM_2C_SEM SM_2D_SAZ
3	CZ-2-2A-SM-00002-8-3-S	2017	3. LVS 8 – Křivo	klátsko	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_3A_SIS SM_3B_OSI SM_3C_SEM SM_3D_SAZ
4	CZ-2-2A-SM-03411-38-5-Z	2017	5. LVS 38 – Bílé	Karpaty a Vizovické vrchy	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_4A_SIS SM_4B_OSI SM_4C_SEM SM_4D_SAZ
5	CZ-2-2A-SM-03546-31-4-E	2017	4. LVS 31 – Čes	komoravské mezihoří	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_5A_SIS SM_5B_OSI SM_5C_SEM SM_5D_SAZ
6	CZ-2-2A-SM-03379-40-5-T-G185	2017	5. LVS 40 – Mo	avskoslezské Beskydy	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_6A_SIS SM_6B_OSI SM_6C_SEM SM_6D_SAZ
8	B-SM-56+4-25-6-RK	1995	6. LVS 25 – Orli	cké hory	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_8B_OSI SM_8C_SEM SM_8C_OPO_SEM SM_8D_SAZ
10	СZ-2-2А-SM-3134-25-7-Н	2006	7. LVS 25 – Orli	cké hory	collected cones seed after processing nursery seedlings nursery transplanted plants	SM_10B_OSI SM_10C_SEM SM_10C_OPO_SEM SM_10D_SAZ

Table 2: Overview of forest reproductive material sources and designation of European beech sample sets

Designation of orest reproductive material source	Source of forest reproductive material	Pro maturation year	oof Natural Forest Areas	Forest vegetation zone	sampling phase	designation of sample set
2	CZ-2-2A-BK-00030-19-5-U-G082-1	. 2018	5. LVS	19 – Lužická pískovcová vrchovina	seed nursery seedlings nursery transplanted plants	BK_2A_OSI BK_2B_SEM BK_2C_SAZ

3	СZ-1-2С-ВК-00009-38-4-В	2018	4. LVS	38 – Bílé Karpaty a Vizovické vrchy	seed nursery seedlings nursery transplanted plants	BK_3A_OSI BK_3B_SEM BK_3C_SAZ
4	CZ-2-2A-BK-06035-10-4-C-G42	2018	4. LVS	10 – Středočeská pahorkatina	seed nursery seedlings nursery transplanted plants	BK_4A_OSI BK_4B_SEM BK_4C_SAZ
5	СZ-2-2В-ВК-03454-26-4-Н-G101-1	2016	4. LVS	26 – Předhoří Orlických hor	seed nursery seedlings nursery transplanted plants	BK_5A_OSI BK_5B_SEM BK_5C_SAZ
6	CZ-2-2B-BK-06065-10-4-C-G42	2018	4. LVS	10 – Středočeská pahorkatina	seed nursery seedlings nursery transplanted plants	BK_6A_OSI BK_6B_SEM BK_6C_SAZ
7	CZ-1-2C-BK-01004-1-6-U	2018	6. LVS	1 – Krušné hory	seed nursery seedlings nursery transplanted plants	BK_7A_OSI BK_7B_SEM BK_7C_SAZ
10	CZ-2-2B-BK-00009-36-3-Z	2018	3. LVS	36 – Středomoravské Karpaty	seed nursery seedlings nursery transplanted plants	BK_7A_OSI BK_7B_SEM BK_7C_SAZ

Conclusion

Using the performed Structure analysis, the obtained profiles of monitored units of Norway spruce and beech reproductive material (4 and 3 sample sets from one units) of different origin were distinguishable from each other. Optimized methodological procedures could be used in the state control systems of verifying declared origin of Norway spruce and beech reproductive material and in order to increase consumer protection of forest owners and nursery producers in the Czech Republic.

Acknowledgements

This work was supported by grants from the Ministry of Agriculture of the Czech Republic (No. NAZV QK1810129, and Institutional Support MZE-RO0118).

References

SM_10D_SAZ ≫ Figure 1: Evaluation of genetic

Figure 2: Evaluation of genetic structure by Bayesian method for K = 7 in 21 European beech sample sets

structure by Bayesian method for K = 8
in 32 Norway spruce sample sets

Results

Selected seven and nine optimally polymorphic markers reported sufficient informative value for the subsequent evaluation of the genetic structure of the monitored sets of Norway spruce and European beech reproductive material by Bayesion clustering. The most optimal number of clusters were K = 8 for Norway spruce sample sets and K = 7 for European beech sample sets. The structuring of investigated Norway spruce and European beech sample sets were confirmed by various proportions of genetic profiles according to the Bayesian clustering method results (Fig. 1–2). According to the performed evaluations of forest reproductive materials sets with different sample numbers (60, 30, 20, 10) in the compared sets, it can be declared that the recommended number of samples to confirm agreement in population structures is 60.

FALUSH D., STEPHENS M., PRITCHARD J.K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164 (4): 1567–1587. DOI: 10.1093/GENETICS/164.4.1567

FALUSH D., STEPHENS M., PRITCHARD J.K. 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology, 7(4): 574–578. DOI: 10.1111/j.1471-8286.2007.01758.x

HUBISZ M.J., FALUSH D., STEPHENS M., PRITCHARD J.K. 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9 (5): 1322–1332. DOI: 10.1111/j.1755-0998.2009.02591.x

Li Y.L, Liu J.X 2018. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18: 176–177.

PEAKALL R., SMOUSE P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288–295. DOI: 10.1111/j.1471-8286.2005.01155.x

РЕАКАLL R., SMOUSE P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28: 2537–2539. DOI: 10.1093/bioinformatics/bts460

PRITCHARD J.K., STEPHENS M., DONNELLY P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155 (2): 945–959. DOI: 10.1093/genetics/155.2.945