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Abstract: Soil organic carbon (SOC) is an important soil characteristic as well as a way how to mitigate climate change. 
Information on its content and spatial distribution is thus crucial. Digital soil mapping (DSM) is a suitable way to evaluate 
spatial distribution of soil properties thanks to its ability to obtain accurate information about soil. This research aims to 
apply machine learning algorithms using various environmental covariates to generate digital SOC maps for mineral top-
soils in the Liberec and Domažlice districts, located in the Czech Republic. The soil class, land cover, and geology maps as 
well as terrain covariates extracted from the digital elevation model and remote sensing data were used as covariates in mo-
delling. The spatial distribution of SOC was predicted based on its relationships with covariates using random forest (RF), 
cubist, and quantile random forest (QRF) models. Results of the RF model showed that land cover (vegetation) and eleva-
tion were the most important environmental variables in the SOC prediction in both districts. The RF had better efficiency 
and accuracy than the cubist and QRF to predict SOC in both districts. The greatest R2 value (0.63) was observed in the 
Domažlice district using the RF model. However, cubist and QRF showed appropriate performance in both districts, too. 
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Although human population growth affects soil, 
soil quality must be maintained to ensure human 
survival (Pieri 1992; Brevik 2013). Soil organic car-

bon (SOC) is one of the most important indicators 
of soil quality and constitutes the largest terrestrial 
pool of bound carbon (Victoria et al. 2012; Lal et al. 

https://www.agriculturejournals.cz/web/swr/


33

Soil and Water Research, 19, 2024 (1): 32–49 Original Paper

https://doi.org/10.17221/119/2023-SWR

2021). Many studies have been conducted to identify 
suitable methods to model and monitor SOC due 
to its substantial influence on atmospheric carbon 
dioxide (CO2), which affects climate change (Selva-
radjou et al. 2007). However, a high-resolution spatial 
prediction of SOC is needed to inform sustainable 
soil management practices and to assess the impacts 
of land-use.

Numerous studies have been conducted on the 
prediction of SOC distribution using digital soil map-
ping (DSM) (Nikou & Tziachris 2022); nevertheless, 
detailed aspects such as specific features, input data, 
and models used for spatial prediction in DSM have 
not been fully compiled for SOC in forest and agri-
cultural soil (Minasny & McBratney 2016). Similarly 
in the Czech Republic, there are examples of produc-
ing high-resolution maps of SOC at the local, regional, 
or national scale, while there are no adequate studies 
considering the prediction of SOC in the Liberec and 
Domažlice districts. Additionally, there is no feasible 
study elucidating this approach, despite the region’s 
active engagement in agriculture production. In this 
research, many different aspects of SOC are spatially 
evaluated concerning specific characteristics, input 
data, and models for SOC. 

Therefore, this study aims to compare three models 
including random forest (RF), cubist, and quantile 
random forest (QRF) to assess their prediction ac-
curacy, important variables, and spatial predictions 
of SOC as well as compare prediction uncertainty 
maps and suggest the best model that can be used 
to predict SOC in the Liberec and Domažlice districts 
in the Czech Republic.

Background
This section reviews information about SOC dis-

tribution as well as applications of DSM and machine 
learning in the prediction of SOC distribution.

SOC distribution. One of the significant param-
eters that influence SOC distribution and explain 
the variation in SOC is topography as it is related 
to the extent of soil erosion, sediment yield, and the 
rate of incoming solar radiation. In addition, changes 
in other soil properties (such as changes caused 
by cultivation) influence the SOC content prediction 
by affecting aggregate stability, porosity, and bulk 
density. It has been also found that land-use, land 
management, vegetation, elevation, slope, rainfall, 
soil type, and wetness index are the most effective 
predictors of SOC (Badia et al. 2016; Mosleh et al. 
2016; Wiesmeier et al. 2019; Borůvka et al. 2022). 

Additionally, Nozari & Borůvka (2020, 2023) showed 
that there is a clear relationship between SOC and 
environmental variables, particularly terrain param-
eters. Although changes in environmental variables 
can influence the SOC prediction accuracy, the direct 
relationship between variables and model accuracy 
is not straightforward. In other words, a reduction 
in variables in a specific model may either decrease 
or increase the accuracy of model, depending on the 
relationships between variables and model types 
(Heung et al. 2014).

DSM. Although traditional maps are still a major 
source of information on the distribution of SOC, 
the development of DSM offers better ways to gener-
ate such information in the Czech Republic (Žížala 
et al. 2022). DSM provides essential tools to improve 
the understanding of the distribution of SOC for 
both forest and agricultural soils. It increases the 
efficiency of mapping process and provides a more 
detailed, accurate, and quantitative prediction of soil 
properties for different areas (Lorenzetti et al. 2015). 
Additionally, DSM has become a powerful tool for 
optimal decision-making in environmental and ag-
ricultural management by providing relevant soil 
information (McBratney et al. 2003). DSM inte-
grates information from observed soil attributes 
with dependent environmental covariates obtained 
from terrain analysis, geospatial data sources, and 
remote sensing images using geographical infor-
mation systems (GIS) and machine learning (ML) 
to generate grid-based maps of different soil types 
and properties and predict the spatial distribution 
of soil properties using a quantitative framework 
(McBratney et al. 2003; Mulder et al. 2011).

Machine learning. ML is the self-adaptive method 
where a fitted pattern can be used to set prediction 
targets for new data. Brungard et al. (2015) reported 
that covariates selected by soil scientists familiar 
with the study area did not yield the most accurate 
models compared to covariates automatically selected 
by ML algorithms. Additionally, Borůvka et al. (2022) 
showed that even large datasets used for modelling 
do not guarantee highly accurate prediction. Although 
the number of studies using ML algorithms have 
been increasing, only a few studies have compared 
different learners, and most studies are limited to the 
evaluation of a few common models such as random 
forest (Fathololoumi et al. 2020). QRF takes into 
account both landscape properties and the density, 
which is closer to the experience of a soil surveyor. 
QRF is based on the hypothesis that the clustering, 
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optimizing the prediction of the mean, also opti-
mizes the prediction of the other quantiles and the 
uncertainty. Although this has not been fully proven 
yet, Meinshausen (2006) showed that QRF clearly 
outperformed the quantile regression algorithms 
estimating each quantile separately in five different 
case studies (Vaysse & Lagacherie 2017).

METHODOLOGY

An overall evaluation of the performance of RF, cub-
ist, and QRF models for SOC mapping was conducted 
using R, version 3.5.1 (R Core Team 2018), to provide 
a framework for interpretation. The local uncertainty 
was assessed through a rigorous cross-validation 
approach. The evaluation consisted of comparing 
metrics of the performance, visual inspection, and 
interpretation of anomalies with geographic knowl-
edge to figure out why the accuracy of the model for 
some locations in the landscape is not acceptable.

Study area and soil sampling
The Liberec district (989 km2) is located in the 

northern Czech Republic (Figure 1) with elevations 
ranging from 210 to 1 124 m above mean sea level 
and is covered by 47.2% agricultural land, 42.4% 
forest area, and less than 6% mix of agriculture 
and forests (Miko & Hošek 2009), as illustrated 
in Figure 3C. On the other hand, the Domažlice 
district (1 123 km2) is located in the western Czech 
Republic with elevations ranging from 383 to 1 
042 m and is covered by 53.0% agricultural land, 
38.2% forest land, and less than 6% mix of agricul-
ture and forests (Miko & Hošek 2009), as illustrated 
in Figure 4C.

The soil was classified according to the Czech 
Taxonomic Soil Classification System and WRB 
system (Němeček et al. 2011; IUSS Working Group 
WRB 2015). Eight classes of mineral parent material 
including sedimentary rocks, acid granites and similar 
rocks, basalts, loess-like sediments, micaceous schists 
and phyllites, polygenetic loams, gneisses, alluvial 
(fluvial) and six major reference soil groups including 
Cambisols, Podzols, Gleysols, Stagnosols, Luvisols, 
and Fluvisols were identified in the Liberec district. 
Eight classes of mineral parent material including 
sedimentary rocks, acid granites and similar rocks, 
other mafic rocks, loess-like sediments, micaceous 
schists and phyllites, polygenetic loams, gneisses, 
alluvial (fluvial) sediments as well as five major ref-
erence soil groups including Cambisols, Gleysols, 
Stagnosols, Luvisols, and Fluvisols were observed 
in the Domažlice district (Němeček et al. 2011; IUSS 
Working Group WRB 2015).

In this study, 71 samples for the Liberec and 67 sam-
ples for the Domažlice districts were randomly col-
lected in 2004 (Figure 2 and Table 1).

The sampling depth was 0–30 cm because it repre-
sents the plow depth and SOC estimation in this depth 
is an important factor in farm management. In each 
location, soil was sampled to a depth of 30 cm using 
a steel soil auger after removing plant debris such 
as grass and twigs. In forest, the forest floor was also 
removed for consistency of samples across different 
land covers. The collected soil samples were stored 
in plastic bags and transferred to the laboratory for 
analysis. To measure SOC, soil samples were air-
dried, grinded and sieved using a sieve with mesh size 
< 0.25 mm, and the SOC was determined through the 
oxidimetric modified Tyurin method (Pospíšil 1964).

Figure 1. Location of  the Liberec (red) and Domažlice 
(green) districts in the Czech Republic

Figure 2. Elevation maps and distribution of  sampling 
locations in the Liberec (A) and Domažlice (B) districts
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Legacy data and auxiliary environmental covariates
Environmental covariates are essential in the DSM 

process and can be obtained from a combination of re-
motely sensed data, digital elevation model (DEM), 
or other geospatial sources (Lagacherie et al. 2006). Soil 
survey and soil mapping have a long tradition in the 
Czech Republic. Various large-scale point or polygon 
legacy soil data and maps are available in the country 
(Kozák et al. 1996; Němeček 2000) and Europe (Pana-
gos et al. 2014). In this research, a DEM with a 100 m 
spatial resolution was obtained from the U.S. Geological 
Survey database (USGS 2021). A suite of 15 topographic 
variables was computed using SAGA GIS 7.2.0 (Conrad 
et al. 2015). In addition, normalized difference vegeta-
tion index (NDVI) (Landsat TM image (USGS 2021)), 
soil, geological (Kozák et al. 1996), and CORINE Land 
Cover maps (EEA 2018) were used as the predictors. 
The CORINE database contains four main categories 
including forest, arable land, pasture, and industrial 
areas (Figures 3 and 4). Table 2 presents a summary 
of the total 16 environmental variables used in this 
study. Borůvka et al. (2022) reported that the importance 
of environmental variables in the models for SOC stock 
prediction varies in different regions and altitudes.

Vegetation indices are helpful in modelling SOC 
because the vegetation is the ultimate source of SOC. 
NDVI is a common unitless remote sensing index 
that uses the ratio between visible and near-infrared 
reflectance of vegetation cover. Additionally, it can 
estimate the green density of the area (Weier & Her-
ring 2000). NDVI is calculated as:

   (1)

where:
NIR – the amount of image reflection in the near-infra-

red band;
RED – is the amount of image reflection in the red band.

NDVI was calculated from a Landsat TM image 
with < 10% cloud cover. The image was taken in 1992 
under clear weather conditions on the 9th of August 
for the Domažlice district and the 19th of September 
for the Liberec district. Two spectral bands were 
selected from Landsat Legacy TM including Band 

NIR REDNDVI     
NIR RED

−
=

+

three, containing red reflectance, and Band four with 
infrared reflectance.

Basic statistical analyses
Statistical differences in mean values were com-

puted by one-way analysis of variance (ANOVA) 
method using SPSS (SPSS 2001) and R, version 3.5.1 
(R Core Team 2018). One-way ANOVA was conducted 
to evaluate the effects of  landform types (slope) 
on soil properties (Duncan’s test at  the 5% level 
of significance). The SPSS analysis was also carried 
out to determine the correlation matrix between 
variables used in this study. In addition, multiple 
and linear regression coefficients were calculated 
to determine the relationships between auxiliary 
variables and SOC using R and SPSS.

Regression models
The models used in this study include a tree-based 

methods called RF, cubist, and QRF (Pahlavan-Rad 
et al. 2020). Many studies have demonstrated that RF 
has superior performance compared to other models 
(Brungard et al. 2015; Pahlavan-Rad et al. 2018; Zer-
aatpisheh et al. 2019). Indeed, RF is a modified and 
extended model of the regression tree model (as a ba-
sic idea) and it constructs a forest of low-correlation 
regression trees (Peters et al. 2007). However, the 
original implementation of RF was unable to produce 
spatial estimates of uncertainty. Therefore, QRF 
was introduced as an alternative to the RF learner, 
allowing users to leverage the model predictions 
from each tree of the RF to generate uncertainty 
estimates. On the other hand, cubist is a modifica-
tion and extension of the basic classification tree 
idea (Quinlan 1993). 

Although many studies have proved the high ac-
curacy of the RF model, only a few works have shown 
that the performance of the RF model is not perfectly 
acceptable (Pouladi et al. 2019). In addition, one 
of the limitations of the RF model is that the soil 
properties may be overestimated (Pahlavan- Rad & 
Akbari Moghaddam 2018).

Random forest (RF). RF algorithm, proposed 
by Breiman (2001), is an ensemble learner which con-
sists of many individual decision trees which are built 

Table 1. Number of samples collected in different land-uses

District Agricultural land Forest area Mix of agricultural and forest lands Total
Liberec 35 22 14 71
Domažlice 35 20 12 67
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from a bootstrap sample taken from the population 
of all samples, ntree. Additionally, the node-splitting 
rules are generated by randomly selecting a predictor 
from a subset of predictors based on mtry, which is the 
main tuning parameter for RF. Mtry and ntree were 
identified as those returning the lowest out of bag 

(OOB) error by iterating mtry values from one to the 
total number of important variables and ntree values 
were chosen 1 000. The results of individual models 
are aggregated into an ensemble using an averaging 
function when predicting continuous response vari-
ables (i.e., SOC). The ensemble modelling approach 

Figure 3. Soil map (A), geology map (B), land cover (C), and normalized difference vegetation index (NDVI) (D) for the 
Liberec district
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is designed to mitigate the impacts of model over-
fitting. The RF model was implemented using the 
Caret package (Kuhn 2012; Brewer et al. 2015) in the 
R statistical software (R Core Team 2018).

Quantile random forest (QRF). QRF is an exten-
sion of the RF learner, which allows users to lever-

age the model predictions from each tree of the RF 
to generate uncertainty estimates. Meinshausen 
(2006) reported that QRF not only provides informa-
tion about the conditional mean, but it also provides 
information about the conditional distribution of the 
target variable. In addition, only the mean of the 

Figure 4. Soil map (A), geology map (B), land cover (C), and normalized difference vegetation index (NDVI) (D) for the 
Domažlice district
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observations within the terminal node is used in RF 
whereas QRF keeps all predicted values for each 
terminal node. Accordingly, QRF retains the residual 
distribution at each terminal node, which is used 
to estimate the prediction interval width. The QRF 
model was implemented using the Quantreg Forest 
package (Vaysse & Lagacherie 2017) used by R Studio 
3.5.0 software.

Cubist. Cubist is an extension of Quinlan’s M5 
model tree (Quinlan 1993) and was implemented using 
the cubist package in R (Kuhn et al. 2013; R Core Team 
2018). Although cubist is comparable to ordinary 
regression trees, its leaves are in the form of a linear 
regression equation (Taghizadeh-Mehrjardi et al. 
2016). Considering the hybridization of a tree-based 
model with linear models, cubist can characterize 
both linear and non-linear relationships. It is also 
worth mentioning that many researchers have been 
using the cubist model in different soil prediction 

and mapping techniques (for example Henderson 
et al. 2005; Minasny et al. 2008). The cubist method’s 
principal achievement is to use multiple training 
committees and boosting to make the weights more 
balanced. The outstanding usage of cubist is to ana-
lyse enormous databases that include a great number 
of records and numeric or nominal fields. Cubist 
models also compute variable importance to model 
accuracy as a variable’s relative contribution.

Uncertainty 
Uncertainties in SOC stock assessments are critical 

in determining the significance of the results. No pre-
diction is free from errors, as every model is a simpli-
fied representation of reality. The prediction error can 
be tracked down to uncertainty introduced in a model 
either as a result of input uncertainty or during in-
complete construction of a model. Therefore, the 
modelling process is very dependent on training 

Table 2. Soil environmental covariates mostly derived from digital elevation model (DEM) (McBratney et al. 2003)

Soil-environmental covariates Code Significance related to soil development and properties
Elevation Elev climate, vegetation, energy potential

Slope S surface and subsurface flows, flow speed and erosion rate, precipitation,  
vegetation, geomorphology, soil water content, land-use capacity

Profile curvature PC
profile curvature is the rate of change of slope in a downslope direction; 
it characterizes changes in flow acceleration that may differentiate erosion 
and deposition zones in landscapes

Plan curvature Plan. Cur convergent/divergent flows, soil water content, soil characteristics, 
flow acceleration, erosion rate/deposition, geomorphology

Length slope factor LSF surface flow volume
Topographic wetness index TWI a measure of the topographic control on soil wetness

Valley depth Va. Dep valley depth specifies soil characteristics, influencing composition and fertility, 
crucial for effective land management

Relative slope position RSP it is a measure of the percentage distance a location is from slope bottom 
to nearest ridge top, influencing drainage, erosion, and microenvironments

Convergence index CI it is calculated based on the aspect that shows the structure of the relief  
and flow convergence affecting water movement

Vertical distance to channel 
networks VDCN a grid provides information about the channel network, influencing 

drainage patterns and sediment transport

Channel network base level CNBL this grid output contains the interpolated channel network of base level  
elevations, defining landscape lowering and drainage efficiency

Total catchment area Cat. Area expected runoff volume that determines water inflow and sediment transport

Normalized difference  
vegetation index of Landsat-4 NDVI it reflects vegetation health and biomass

Geology map Geology polygon map of soil parent material 
Soil map Soil polygon map of soil classes 

Land-use map Land-use polygon map of CORINE land cover categories that shows vegetation 
and human activities impacting soil
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data, not only because of its uncertainties, but also 
because QRF estimates the cumulative distribution 
function (CDF) by using an empirical CDF. There-
fore, it quantifies the complete error given a certain 
input vector as it includes a conditional variance 
estimate for Y by using the information within the 
leaves. Hence, Meinshausen’s et al. (2016) technique 
can be used for making prediction intervals and not 
for confidence intervals because the empirical CDF 
provides no information on the uncertainty of the 
fit of the RF model itself since the data needs to be 
a representative sample of the underlying popula-
tions (James et al. 2014).

Model evaluation
Spatial models were validated by leave-group-out 

cross-validation (LGOCV) as well as by independent 
validation. The latter was performed by randomly 
splitting the sample set (70% calibration and 30% 
validation). Each model was fitted using the train 
data and the test data was used for validation. 
Differences between observed and predicted val-
ues were summarized as the root-mean-squared 
error of prediction (RMSEP) and the bias of the 
estimation. 

Model evaluation is an essential factor for accu-
rately predicting SOC (Mosleh et al. 2016). K-fold 
cross-validation is usually used to evaluate model 
performance. In this research, the training dataset 
was randomly partitioned into 10 folds (k = 10), 
so 10-fold cross-validation was used. The model was 
trained using k = 9 folds, tested with the one remain-
ing fold, and accuracy metrics were calculated based 
on the test fold. The process of training and testing 
was repeated 10 times so each individual fold was 
selected as the test set once. The model performance 
was evaluated based on the average accuracy met-
rics of all folds including mean absolute prediction 
error (MAE), root mean square error (RMSE), and 
index of determination (R2). The metrics were used 
to evaluate the prediction error rates and model ef-
ficiency as well as to investigate the correspondence 
between predicted and measured data.

   (2)

   (3)

   (4)

   (5)

where:
yi – the measured value at i-th location;
ŷi – the predicted value of y;
–y – the mean value of y;
N – the number of units (locations).

Although R2 is a valid statistic to evaluate the pre-
diction accuracy of a model, a high R2 may not lead 
to accurate predictions. This is because the model 
could systematically and considerably over- and/or 
under-estimate the data at different points along the 
regression line. As a result, evaluation of the models 
using other performance statistics appears to be 
necessary to provide complement information on pre-
diction accuracy. A lower gained value is adequate 
and evaluated best for the selection of a model using 
the RMSE and MAE validation criteria evaluation 
methods. In the current study, the Li et al. (2016) 
criterion was applied. They proposed a classification 
criterion for R2: unacceptable prediction (R2 < 0.50), 
acceptable prediction (0.50 ≤ R2 < 0.75), and good 
prediction (R2 ≥ 0.75).

RESULTS AND DISCUSSION

Summary statistics and correlation analysis
Statistics summary of SOC is presented in Ta-

ble 3. The average SOC was 2.83% and 2.83% in the 
Liberec and Domažlice districts, respectively (Nozari 
& Borůvka 2023). The results of the correlation analy-
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Table 3. Statistics summary of soil organic carbon (SOC) for both districts (%)

District No. of observations Minimum Maximum Mean Median SD
Liberec 71 0.42 11.33 2.83 1.86 2.50
Domažlice 67 0.00  9.33 2.83 1.49 2.39

SD – standard deviation
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sis between environmental covariates and SOC are 
also presented in Tables 4 and 5. SOC was positively 
correlated with elevation. Although the correlation 
between most of the variables and SOC was not high, 
the RF model can identify nonlinear relationships 
between variables. Nevertheless, one of the significant 
parameters to explain SOC content variation is eleva-
tion, particularly in areas outside of flat sub-humid 
climates (Tziachris et al. 2019). The characteristics 
showing good correlation with SOC indicate poten-
tial candidates for strong predictors in SOC models, 
as analysed in section Variable importance.

Model validation
Table 6 presents values for R2, MAE, and RMSE 

in the Liberec and Domažlice districts using RF, 
QRF, and cubist models. R2 values ranged between 
0.40 and 0.68, MAE ranged between 0.98 and 1.49, and 
RMSE ranged between 1.32 and 2.21. It is generally 
believed that R2 values greater than 0.4 indicate the 
effectiveness of the model in predicting soil properties 
(Prasad et al. 2006; Moore et al. 2013). Although R2, 
MAE, and RMSE values for all three models used 
in this study were similar, RF consistently showed 
greater accuracy metrics (greater R2 but smaller RMSE 
and MAE values) compared to cubist and QRF for 
both districts. Therefore, based on these accuracy 
metrics RF was considered the most accurate algo-
rithm among the three models used in this research. 
This finding supports the findings of other studies 
which also found that RF is suitable for soil spatial 
modelling due to its high accuracy (Ellili et al. 2019; 
Lamichhane et al. 2019). It should be noted that 
these indicators may not be suitable for prediction 
accuracy of the local uncertainty.

Variable importance
Mosleh et al. (2016) reported that the parameters 

derived from the DEM in low-relief areas are appro-
priate environmental factors to model soil proper-
ties. In this research, the relative importance of the 
predictor variables in the SOC modelling was evalu-
ated using the Varlmp function in R (R Core Team 
2018). It is believed that the climate, temperature, 
and disaster conditions (e.g. large-scale geological 
or meteorological events such as flooding, runoff, 
erosion, drought, and dust storms) are similar in both 
districts. In the Liberec district, the most effective 
variables in SOC prediction using RF and cubist 
models were land cover (vegetation), elevation, valley 
depth, and slope as illustrated in Figure 5. Similarly, 

Ellili et al. (2019) found that slope and elevation are 
the most important covariate variables for predict-
ing SOC. These results indicate that the land cover 
is essential in identifying the SOC distribution. Co-
niferous forest, broad-leaved forest, and mixed forest 
containing a great amount of SOC in both districts 
show the importance of forest management. In addi-
tion, slope and valley depth, which are related to the 
topography and hydrology of the region, have effects 
on water distribution and runoff transport, affecting 
the erosion and deposition that changes the spatial 
variation of SOC in this mountainous area, as well 
as the soil organic matter (SOM) decomposition and 
accumulation processes. Generally, the steeper and 
longer a slope is, the faster water runs off from it, 
increasing the potential of erosion. Therefore, the 
influences of slope and valley depth were also high-
lighted as significant auxiliary variables in predicting 
SOC in the Liberec region. In the Domažlice district, 
the most important variables in SOC prediction using 
RF and cubist models were land cover and elevation 
as illustrated in Figure 5. It also confirms the sig-
nificance of vegetation and topographic parameters 
similar to the Liberec district.

Spatial prediction of SOC
The spatial distribution of SOC content for the top-

soil in the Liberec and Domažlice districts using RF, 
cubist, and QRF models is illustrated in Figures 6, 7, 
and 8, respectively.

Generally, all three models used in this study were 
similar in terms of spatial patterns of SOC content. 
The biggest SOC content was found in high elevations 
covered by forests, while the lowest SOC content 
was observed in the areas where croplands have re-
placed the plantation and indigenous forests, which 
is consistent with observations by other researchers 
(Tesfahunegn et al. 2011; Winowiecki et al. 2016). 
Therefore, a reduction in SOC stocks could be due 
to the biomass removal after harvesting, erosive 
processes, and frequent tillage that breaks up the 
soil aggregates, alters aeration, and accelerates the 
microbial decomposition and oxidation of SOM 
to CO2. It was also found that increasing elevation 
increased the average SOC concentrations, confirm-
ing that SOC responds to climatic variables such 
as temperature that decreases as elevation increases. 
Increased SOC may also be due to the recent changes 
in land-use. For example, agricultural lands at higher 
elevations are more likely to have been recently 
changed to another type of land (grassland).
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Results also showed greater SOC accumulation 
extending from northeast to west areas of the Liberec 
region, and west to southeast parts of the Domažlice 
region. Generally, elevation changes affect the soil 
physicochemical attributes which are the main 
factors for predicting the SOC content variation. 
As can be seen in Figures 6, 7, and 8, SOC content 
has changed sharply based on QRF, while RF shows 
a more continuous distribution of SOC content for 
both regions. In addition, QRF maps showed differ-
ent SOC distribution from RF and cubist maps in the 
Liberec district. SOC content in the western part 
of the study areas predicted by QRF maps is much 

lower than that predicted by cubist. Although RF 
maps show a rather even distribution of SOC content 
in agricultural and forestry areas, its results greatly 
differed from the cubist and QRF maps. RF map 
indicated that SOC content of the elevation ridge 
in the eastern parts of the Domažlice district is much 
lower than that predicted by cubist. Moreover, the RF 
map predicted a higher amount of SOC in northern 
parts, southern parts, and around the centre of the 
Liberec district than cubist and QRF maps.

Topography maps (Figure 2) show that the Liberec 
district is mostly mountainous and sloping, which 
results in a greater accumulation of SOC. This can 

Table 6. Assessment results for random forest (RF), cubist, and quantile random forest (QRF) models for soil organic 
carbon (SOC) prediction

Model
Liberec district Domažlice district

R2 MAE RMSE R2 MAE RMSE
RF 0.58 1.40 1.98 0.68 0.98 1.32
QRF 0.48 1.28 1.98 0.49 1.18 1.74
Cubist 0.40 1.49 2.21 0.64 1.08 1.57

R2 – coefficient of determination; MAE – mean absolute error; RMSE – root mean square error

Figure 5. Relative variable importance (%) for soil organic carbon (SOC) spatial prediction by random forest (RF) in Li-
berec (A), cubist in Liberec (B), RF in Domažlice (C), and cubist in Domažlice (D) 
TWI – topographic wetness index; LSP – length slope factor; RSP – relative slope position
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be due to the combined effects of soil acidification 
through reduced decomposition in higher elevations 
and poor water drainage on lower slopes. Similarly, 
Zhu et al. (2018) reported that the SOC content 

is more aggregated and less decomposed in soils 
with greater slope and poor drainage. In addition, 
topographic variables such as the depth of the valley 
have affected water distribution, runoff velocity, and 

Figure 6. Soil organic carbon (SOC) distribution maps using random forest (RF) model in the Liberec (A) and Domaž-
lice (B) districts

Figure 7. Soil organic carbon (SOC) distribution maps using cubist model in the Liberec (A) and Domažlice (B) districts
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sediment erosion, and so the spatial variation of SOC 
in both regions has increased. The reduction of SOC 
is more pronounced in agricultural and residential 
areas than in areas where human manipulation in na-

ture is limited. Total SOC content in both districts 
is high due to the high humidity, forest vegetation such 
as coniferous forest, and a great amount of rainfall 
resulting in denser vegetation. As a result, this study 

Figure 8. Soil organic carbon (SOC) distribution maps using quantile random forest (QRF) model in the Liberec (A) 
and Domažlice (B) districts

Figure 9. Soil organic carbon (SOC) uncertainty maps using random forest (RF) model in the Liberec (A) and Domaž-
lice (B) districts
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confirms the importance of terrain-based covariates 
and vegetation on SOC content variability in sub-
humid areas. Also, there is a great variety of land-
use and agricultural practices that may generate 
contrasting organic matter levels.

SOC prediction uncertainty
DSM requires field observations, empirical pre-

diction models, and a variety of environmental 
covariates to model spatially explicit predictions 
of soil properties. Therefore, the predictions are 

Figure 10. Soil organic carbon (SOC) uncertainty maps using cubist model in the Liberec (A) and Domažlice (B) districts
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Figure 11. Soil organic carbon (SOC) uncertainty maps using quantile random forest (QRF) model in the Liberec (A) 
and Domažlice (B) districts
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always related to uncertainties brought by these 
three sources. SOC prediction uncertainty maps us-
ing RF, cubist, and QRF models for the Liberec and 
Domažlice districts are illustrated in Figures 9–11. 
The greatest uncertainty of SOC was in the conifer-
ous forests in both districts (compared to landcover 
maps in Figures 3C and 4C). This is likely because 
there were relatively few SOC samples (15 samples 
in Liberec and 17 samples in Domažlice districts) and 
the variability of the covariates increased in these 
areas. Therefore, it is recommended to take more 
samples from these areas to ensure lower SOC pre-
diction uncertainty. Interestingly, although each 
model had similar RMSE, MAE, and R2, there are 
differences in uncertainty patterns in each model 
prediction for both districts. Particularly, differ-
ences between RF and QRF, using the same basic 
algorithm, were surprising. This can be because they 
differ in how the terminal nodes are dealt with. QRF 
appears to produce a lower uncertainty at lowlands 
compared to RF, however, both QRF and cubist show 
larger values in the mountainous regions where the 
models are most likely extrapolating. While the 
QRF model had low RMSE and MSE values similar 
to RF, the uncertainty distribution is much more 
uniform for RF.

Similar pattern is repeated in the Domažlice dis-
trict as well. The higher uncertainty in predicted 
SOC was observed in mountains and forests com-
pared to the cropland and pastures which is visible 
in western areas.

CONCLUSION

This study assessed the spatial distribution of SOC 
in the Liberec and Domažlice districts in the Czech 
Republic. From the results of this study, the follow-
ing conclusions can be drawn:
(1) Although the studied models including RF, QRF, 

and cubist did not have substantially excellent 
performance (not achieving high R2 values), RF 
model consistently showed the best performance 
among all three models in both districts.

(2) Based on the RF model results, land cover (vegeta-
tion) and elevation were the most important en-
vironmental covariates for the prediction of SOC 
in both districts.

(3) The highest SOC content was predicted in the 
highest elevation in the forest-dominated areas 
(northeastern to western parts of the Liberec 
region and western to southeastern parts of the 

Domažlice region) while the lowest SOC was 
found in the lowest elevations in the cropland-
dominated areas.

(4) The greatest uncertainty of SOC was observed 
in the coniferous forests in both districts, most 
likely because there were relatively few SOC 
samples and the variability of the covariates in-
creased in these areas.

(5) Overall, RF can use many terrain covariates which 
have a strong spatial association with SOC and 
is considered the most accurate predictive model 
for both districts because it showed better per-
formance (greater R2 but smaller RMSE and MAE 
values, more uniform uncertainty distribution 
without very high uncertainty values) compared 
to cubist and QRF for both districts.

(6) Finally, to improve the prediction accuracy of SOC 
distribution, more observations and stratified 
random sampling using known variables such 
as habitat type, elevation, or soil type are recom-
mended to be performed in both districts which 
will enhance the performance of all models.
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